Extensions 1→N→G→Q→1 with N=C22 and Q=S3×C32

Direct product G=N×Q with N=C22 and Q=S3×C32
dρLabelID
S3×C6272S3xC6^2216,174

Semidirect products G=N:Q with N=C22 and Q=S3×C32
extensionφ:Q→Aut NdρLabelID
C22⋊(S3×C32) = C32×S4φ: S3×C32/C32S3 ⊆ Aut C2236C2^2:(S3xC3^2)216,163
C222(S3×C32) = C3×S3×A4φ: S3×C32/C3×S3C3 ⊆ Aut C22246C2^2:2(S3xC3^2)216,166
C223(S3×C32) = C32×C3⋊D4φ: S3×C32/C33C2 ⊆ Aut C2236C2^2:3(S3xC3^2)216,139

Non-split extensions G=N.Q with N=C22 and Q=S3×C32
extensionφ:Q→Aut NdρLabelID
C22.(S3×C32) = Dic3×C3×C6central extension (φ=1)72C2^2.(S3xC3^2)216,138

׿
×
𝔽